### Section IV. Objections answered. (cont.)

I first ask mathematicians, what they mean when they say one line or surface is EQUAL to, or GREATER, or LESS than another? Let any of them give an answer, to whatever sect he belongs, and whether he maintains the composition of extension by indivisible points, or by quantities divisible in infinitum. This question will embarrass both of them.

There are few or no mathematicians, who defend the hypothesis of indivisible points; and yet these have the readiest and justest answer to the present question. They need only reply, that lines or surfaces are equal, when the numbers of points in each are equal; and that as the proportion of the numbers varies, the proportion of the lines and surfaces is also varied. But tho' this answer be just, as well as obvious; yet I may affirm, that this standard of equality is entirely useless, and that it never is from such a comparison we determine objects to be equal or unequal with respect to each other. For as the points, which enter into the composition of any line or surface, whether perceived by the sight or touch, are so minute and so confounded with each other, that it is utterly impossible for the mind to compute their number, such a computation will never afford us a standard by which we may judge of proportions. No one will ever be able to determine by an exact numeration, that an inch has fewer points than a foot, or a foot fewer than an ell or any greater measure; for which reason we seldom or never consider this as the standard of equality or inequality.

As to those, who imagine, that extension is divisible in infinitum, 'tis impossible they can make use of this answer, or fix the equality of any line or surface by a numeration of its component parts. For since, according to their hypothesis, the least as well as greatest figures contain an infinite number of parts; and since infinite numbers, properly speaking, can neither be equal nor unequal with respect to each other; the equality or inequality of any portions of space can never depend on any proportion in the number of their parts. 'Tis true, it may be said, that the inequality of an ell and a yard consists in the different numbers of the feet, of which they are composed; and that of a foot and a yard in the number of the inches. But as that quantity we call an inch in the one is supposed equal to what we call an inch in the other, and as 'tis impossible for the mind to find this equality by proceeding in infinitum with these references to inferior quantities; 'tis evident, that at last we must fix some standard of equality different from an enumeration of the parts.

There are some^{1}, who pretend, that equality is
best defined by congruity, and that any two
figures are equal, when upon the placing of one upon the other, all their
parts correspond to and touch each other. In order to judge of this
definition let us consider, that since equality is a relation, 'tis not,
strictly speaking, a property in the figures themselves, but arises merely
from the comparison, which the mind makes betwixt them. If it consists,
therefore, in this imaginary application and mutual contact of parts, we
must at least have a distinct notion of these parts, and must conceive their
contact. Now 'tis plain, that in this conception we would run up these parts
to the greatest minuteness, which can possibly be conceived; since the
contact of large parts would never render the figures equal. But the
minutest parts we can conceive are mathematical points; and consequently
this standard of equality is the same with that derived from the equality of
the number of points; which we have already determined to be a just but an
useless standard. We must therefore look to some other quarter for a
solution of the present difficulty.

There are many philosophers, who refuse to assign any standard of equality, but assert, that 'tis sufficient to present two objects, that are equal, in order to give us a just notion of this proportion. All definitions, say they, are fruitless, without the perception of such objects; and where we perceive such objects, we no longer stand in need of any definition. To this reasoning, I entirely agree; and assert, that the only useful notion of equality, or inequality, is derived from the whole united appearance and the comparison of particular objects. For 'tis evident, that the eye, or rather the mind is often able at one view to determine the proportions of bodies, and pronounce them equal to, or greater or less than each other, without examining or comparing the number of their minute parts. Such judgments are not only common, but in many cases certain and infallible. When the measure of a yard and that of a foot are presented, the mind can no more question, that the first is longer than the second, than it can doubt of those principles, which are the most clear and self- evident.

There are therefore three proportions, which the mind distinguishes in the general appearance of its objects, and calls by the names of greater, less and equal. But tho' its decisions concerning these proportions be sometimes infallible, they are not always so; nor are our judgments of this kind more exempt from doubt and error, than those on any other subject. We frequently correct our first opinion by a review and reflection; and pronounce those objects to be equal, which at first we esteemed unequal; and regard an object as less, tho' before it appeared greater than another. Nor is this the only correction, which these judgments of our senses undergo; but we often discover our error by a juxtaposition of the objects; or where that is impracticable, by the use of some common and invariable measure, which being successively applied to each, informs us of their different proportions. And even this correction is susceptible of a new correction, and of different degrees of exactness, according to the nature of the instrument, by which we measure the bodies, and the care which we employ in the comparison.

1. See Dr. Barrow's mathematical lectures.